

Fibre-based high-dimensional quantum communications

Davide Bacco, Daniele Cozzolino, Beatrice Da Lio, Y. Ding, Karsten Rottwitt, and Leif Katsuo Oxenløwe

High-Speed Optical Communication Group (HSOC)

Centre for Silicon Photonics for Optical Communication (SPOC)

Outline

- SPOC centre (DTU Fotonik)
- Quantum communications with Hi-D (qudits)
- Examples: Multicore and OAM fibres for QCs
- Application: Hi-D Quantum key Distribution
- Comparison between Hi-D encoding and key multiplexing
- Conclusion

Centre of excellence for Silicon Photonics for Optical Communication

Aim: find solutions to the major challenges of communication systems – security, energy consumption and capacity

Toshio Morioka, Professor, DTU Fotonik

Søren Forchhammer, Professor, DTU Fotonik

Kresten Yvind, Assoc. Professor, DTU Fotonik

Karsten Rottwitt, Professor, DTU Fotonik

29 August 2018

Quantum communication:

Quantum communications with qudits

- ✓ larger PIE and noise robustness for quantum communications
- \checkmark reduction of cloning fidelity in Hi-D quantum states
- \checkmark higher efficiency and flexibility in quantum computing

[N. J. Cerf, et al., P.R.L., 88(12) 2002]

[M. Erhard et al., Light: Science & Applications 7,17146 (2018)]

[J. Wang, et al., Science, 360 (2018)]

J. Wang, et al., Science, 360 (2018)

Multicore fibre for QCs

T. Hayashi et al., Opt. Express19, 16576-16592 (2011)

29 August 2018

 $egin{pmatrix} |A+B
angle\ |A-B
angle \end{pmatrix}$

7

Transmitter

Quantum states

2D

4D

 $egin{pmatrix} |A+C
angle\ |A-C
angle\ |B+D
angle \end{pmatrix}$

 $|A\rangle |B\rangle$

 $-B\rangle$

MCF

Setup of QCs with MCF

Fidelity of MUBs

Theory

Experiment

Y. Ding , D. Bacco et al., npj Quantum Information 3 (2017).

Application Hi-D QKD (MCF)

Problematics:

 \checkmark few meters between transmitter and receiver (5m)

- ✓ Slow repetition rate
- \checkmark difficult to keep stability over time

OAM for QCs

Free-Space Quantum Key Distribution by Rotation-Invariant Twisted Photons

Fibre based QC with twisted photons was not demonstrated!

29 August 2018

Bob

HOM fibre for QCs

BOSTON

UNIVERSITY

Loss : ~1 dB/km

Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers, **S. Ramachandran, A. Willner** groups

Science 2013, 340 (6140), DOI: 10.1126/science.1237861

Mode Division Multiplexing Using Orbital Angular Momentum Modes Over 1.4-km Ring Core Fiber **Uni. Laval**,

Journal of Lightwave Technology 34(18), 2016, DOI: 10.1109/JLT.2016.2594698

18 km low-crosstalk OAM + WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation, **Siyuan Yu group**

Optics Letters 43(8), 2018 DOI: 10.1364/OL.43.001890

12 mode, WDM, MIMO-free orbital angular momentum transmission, **DTU**, **BU**, **OFS**, **Uni.Napoli**

Optics Express 26 (16) 2018, DOI: 10.1364/OE.26.020225

29 August 2018

Orbital Angular Momentum

Conserved: OAM more robust against

mode-mixing

Fibre based QCs with twisted photons

Vortex half plate (q-plate)

L. Marrucci et al., P.R.L. 96.16 (2006)

Results with OAM fibre

Application Hi-D QKD (OAM)

- First demonstration of Hi-D-QKD at 600 MHz using OAM fibre of 1.2 km
- Enhancement of 71% in key generation compared to 2D case
- Proved feasibility of OAM Quantum Communications in a fibre

D.Cozzolino, D.Bacco, et al., PDP CLEO Pacific RIM (2018)

OAM key multiplexing

Independent decoy state BB84 QKD over OAM

D. Bacco, D. Cozzolino et al., in preparation

Experimental results MUX OAM

29 August 2018

Chip-to-chip key multiplexing

Independent decoy state BB84 QKD over MCF

Experimental results MUX MCF

• SDM: Two parallel decoy state BB84 protocol

29 August 2018

Comparison HD-QKD and keys MUX

-High noise HD gain compared to IND

-Low noise better to use MUX technique

Conclusions

- space encoding qudits can be transferred over fibre
 - -demonstration of a ququart through a MCF
 - first transmission of a ququart over an OAM fibre

- applications of qudits
 - Decoy state chip-to-chip Hi-D QKD over MCF fibre
 - Decoy state Hi-D QKD over 1.2 km OAM fibre

• Hi-D or keys multiplexing?

- -low channel noise convenient key MUX
- -high noise, only qudits allow key distillation

Ministry of Higher Education and Science – Denmark

Thanks for your attention!

Additional Slides

Qudits encoding

More robust against noise [N. J. Cerf, et al., P.R.L., 88(12) 2002]

Y. Ding , D-. Bacco et al., npj Quantum Information 3 (2017).

Integrated devices for QCs

P. Sibson et al., Nat. Commun. 8:13984 (2017)

P. Sibson et al, Optica 4, 172-177 (2017)

C. Ma et al, Optica 3, 1274-1278 (2016)

Main setup OAM

Modes characterization

Experimental Results Hi-D OAM

